Krakowska Interdyscyplinarna Szkoła Doktorska

Opis przedmiotu/ course description

Przedmiot/ Course:	Zaawansowane metody badania powierzchni i cienkich
	filmów
Moduł kształcenia/	Moduł specjalistyczny
Training module:	
Okres realizacji/	II rok, semestr letni
Implementation period:	
Język wykładowy/	język angielski/ English
Language:	
Prowadzący/ Lecturer:	dr hab. inż. Jerzy Jedliński, Prof. AGH
Wymiar godzin	30 godzin
przedmiotu/duration:	
Forma prowadzenia zajęć/	Wykład/ ćwiczenia/ seminaria/ e-learning (liczba godzin
Form of teaching:	wykładu: 9, seminarium: 6, laboratorium: 15)
Opis przedmiotu/ course	Module is divided into three parts:
content:	I. Ideal and real surfaces, II. Methods of surface and thin
	films investigation, and III. Selection of the experimental
	methods: rules and examples.
	Part I deals with the surface description in terms of variety
	of approaches, starting from general one, through
	thermodynamic, structural, molecular to mechanical.
	Moreover, surface dynamics and electrical properties of
	surfaces are discussed.
	The beginning of the Part II consists of description of the
	concept of selvedge and of the concept and the approach to
	surface and thin film analyses related to the required
	information which should be experimentally provided with
	emphasis on the physical basics of methods and their
	parameters. Subsequently, the techniques are successively
	discussed, which enable getting qualitative and/or
	quantitative insight into the surface and/or thin films features
	(composition, including distribution of elements,
	microstructure, crystallographic structure, electronic
	structure, distribution of atoms and molecules,).
	Part III deals with application of techniques showing the
	rules which help in choice of the appropriate methods and
	giving several examples of their using to characterize
	various groups of materials.
	Methods of surface and thin films analysis: description
	I. Ideal and real surfaces (in brief)
	1. General description
	2. Thermodynamics of surfaces
	3. The structure of surfaces

- 4. Molecular and mechanical description of surfaces
- 5. Surface dynamics
- 6. Electrical properties of surfaces
- II. Methods of surface investigation
- 7. Concept of selvedge
- 8. General description of the concept and approach
- 9. Interaction of the particles/radiation with matter: application to surface investigation
- 10. Parameters of surface methods
- 11. Electron spectroscopies: XPS (X-ray Photoelectron Spectroscopy), AES (Auger Electron Spectroscopy, SAM (Scanning Electron Microscopy)
- 12. Scattered Ion Mass Spectrometry of light ions: RBS (Rutherford Backscattering Spectrometry), ISS (Ion Scattered Spectrometry)
- 13. Ion-Beam Mass Spectrometry emitted ions: SIMS (Secondary Ion Mass Spectrometry), SNMS (Sputtered Neutrals Mass Spectrometry)
- 14. Scanning Probe Microscopy (SPM): STM (Scanning Tunnelling Microscopy), AFM (Atomic Force Microscopy), other
- 15. SEM (Scanning Electron Microscopy)
- 16. TEM (Transmission Electron Microscopy)
- 17. Sample preparation methods to electron microscopy studies (FIB, ion-beam thinning, ...)
- 18. Raman Spectroscopy and Surface Enhanced Raman Spectroscopy (SERS)
- 19. Glow Discharge Optical Emission Spectroscopy (GDOES)
- 20. Grazing Incidence X-Ray Methods
- III. Selection of the experimental methods: rules and examples (strategy and tactics)

Seminar classes:

Methods of surface and thin films analysis: applications Applications: examples of application of various methods to surface and thin film analysis and solving the problems Examples:

- 1. Characterization of Carbon Nanotubes and Other Related Structures
- 2. Characterization of Nanowires
- 3. Characterization of Graphene and Other Monolayer Structures
- 4. Surface Analysis of Polymers
- 5. Characterization of Catalysts
- 6. Characterization of Various Thin Films, Coatings and Coating-Substrate Systems Steel
- 7. Characterization of Thermally Grown Oxides

Efekty uczenia się wg 8PRK zgodnie z

EU1,EU2,EU3,EU8,EU13

Programem kształcenia	
KISD/ learning outcomes	
at level 8 of the PRK	
according to the KISD	
Training Program:	
Forma weryfikacji	Zaliczenie
efektów uczenia się/	
Method of verification of	
learning outcomes:	
Wymagania wobec	Fundamental knowledge concerning physics and chemistry
uczestników/ Requirements	of solids and of interaction
for participants:	